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“ … symmetric means something like well-proportioned, well-balanced, and symmetry 

denotes that sort of concordance of several parts by which they integrate into a whole. 

Beauty is bound up with symmetry.”    - Hermann Weyl (1989, p. 3) 

 

Symmetry is found in the visual arts, architecture and design of artefacts since the earliest 

time. Many natural objects, both organic and inorganic, display symmetry: from 

microscopic crystals and sub-atomic particles to macro-cosmic galaxies. Today it features 

strongly in higher mathematics such as Linear and Abstract Algebra, Projective and 

Fractal Geometry, Algebraic Topology, Graph and Function Theory, etc., and in many 

other mathematical disciplines such as Quantum Physics, Relativity, String Theory, etc. 

Most primary geometry curricula around the world introduce the concept of line 

symmetry fairly early, and sometimes also that of rotational, translational and glide 

reflective symmetry. However, in high school and even college geometry textbooks, one 

still tends to find a general lack of using symmetry to not only organize and classify 

geometric objects, but also to more easily logically explain (prove) certain properties of 

these objects as theorems.  

For example, typically concepts like rectangles and rhombi are respectively 

introduced by definitions such as: “A rectangle is a quadrilateral with all angles equal” 

and “A rhombus is a quadrilateral with all sides equal.” 

Apart from the problematic pedagogic2 and epistemological3 issues that students 

are just provided ‘ready-made’ definitions from the start that they must dutifully 

                                                
1 First published in Mathematics Teaching, no. 222, May 2011, pp. 34-36 and republished in Learning and 
Teaching Mathematics, Vol. 11, Aug 2011, pp. 22-26 with some additional comments at the end, with 
permission of the Association of Teachers of Mathematics (ATM) at www.atm.org.uk . 
2 According to the Van Hiele theory of learning geometry, formal definitions of concepts should not be 
introduced before students have reached Van Hiele Level 3. 



memorize, these definitions do not express the line symmetric properties of these objects 

at all. More-over, many (if not most) textbooks such as Alexander & Koeberlein (2007, p. 

212) provide a summative list of the properties of the quadrilaterals, which do not even 

mention a single symmetric property, despite an earlier chapter dealing generally with 

line and point symmetry!   

It is sad that students are generally not given the opportunity to critically discuss 

and compare different possible definitions of mathematical objects such as the 

quadrilaterals. Such an exercise could do much to dispel the common misconception 

among students that definitions are somehow cast in stone, and that there is only one 

(correct) definition for each defined object in mathematics. It can help students see that 

mathematical definitions are not independent Platonic objects, existing unchallengeable 

in some ideal world, but are open to critique, and very often are a matter of choice and 

convenience. As Freudenthal (1973:418) has argued, it can help students learn about 

organizing and conceptualizing a topic not only in different ways, but more importantly, 

develop some understanding of  "why some organisation, some concept, some definition 

is better than another” (bold added). 

For example, by defining a rectangle as “a quadrilateral with two lines of 

symmetry, each through a pair of opposite sides” is not only elegant, but allows one to 

much more easily derive (prove) the other properties of a rectangle, without having to use 

congruency. For instance, consider Figure 1. By reflection around the line of symmetry 

m, angles BAD and ABC respectively map onto angles CDA and DCB; hence 

! 

"BAD = 

! 

"CDA and 

! 

"ABC = 

! 

"DCB. By now reflecting around the line of symmetry n, we 

similarly find 

! 

"BAD = 

! 

"ABC and 

! 

"CDA = 

! 

"DCB; hence all angles are equal.  

                                                                                                                                            
3 Research mathematics usually starts with problems and seldom with definitions of concepts, and only end 
with definitions. 



 
Figure 1 

To explain why (prove) its diagonals are equal is also simple and straightforward, 

with absolutely no need to use any congruency. For example, line segment AC maps onto 

line segment DB under the reflection around line m; hence AC = DB.  

If we now further view and classify a rectangle as a special parallelogram, there is 

obviously no need to prove that it has opposite sides equal and parallel, because it then 

inherits those properties from the parallelogram. However, if need be, one can also easily 

derive these properties of a rectangle from its symmetry definition above. For example, 

it’s easy to see by reflection that opposite sides map onto each other, and from the fact 

that all angles are equal, it follows that co-interior angles are supplementary, and 

therefore opposite sides are parallel. 

Similarly we can more easily, and elegantly derive and explain the properties of a 

rhombus without using any congruency by simply defining it as “a quadrilateral with two 

axes of symmetry, each through a pair of opposite vertices.” Again by reflecting around 

the axes of symmetry, we easily find all sides equal, diagonals bisecting each pair of 

opposite angles, and perpendicular to each other (from the definition of a reflection). 

The same applies to a parallelogram, which can be defined as “a quadrilateral 

with half-turn symmetry.” From this definition, and the definition of a half-turn as a 

rotation through 180º, it follows immediately, with absolutely no need for congruency 

proofs that it has opposite sides equal and parallel, opposite angles equal, and diagonals 

bisecting each other. 

A similar ‘deductive economy’ is achieved if we define an isosceles trapezium as 

“a quadrilateral with at least one axis of symmetry through a pair of opposite sides” and 



a kite as “a quadrilateral with at least one axis of symmetry through a pair of opposite 

vertices”. 

Symmetry is also extremely valuable and useful in problem solving and proving 

other theorems and results. For example, the author recently found the following 

interesting little problem from Posamentier & Salkind (1996, p. 4): 

“The trisectors of the angles of a rectangle are drawn. For each pair of adjacent 

angles, those trisectors that are closest to the enclosed side are extended until a point of 

intersection is established. The line segments connecting those points of intersection form 

a quadrilateral. Prove that the quadrilateral is a rhombus.” 

In the provided solutions by the authors on p. 60, a long series of congruency 

arguments are provided to establish the result (and which are not repeated here for the 

sake of expediency). However, the result follows almost immediately from symmetry and 

to use congruency arguments here are really not elegant or economical at all.   

Consider Figure 2 where ABCD is the rectangle with the trisectors constructed to 

form quadrilateral EFGH.  Since ABCD is symmetrical and the constructions are 

symmetrically carried out, it follows that the reflection of E around the line m will be G, 

and vice versa. Similarly, H maps to F under a reflection around line n. Therefore, EFGH 

has two axes of symmetry through opposite pairs of vertices, and hence is a rhombus. 

 
Figure 2 

Another alternative, but equivalent logical explanation would be to argue that H 

and F both lie on m since they are at the apexes of isosceles triangles, etc. It seems 

somewhat silly and pedantic to insist here that students be shackled by the traditional 

Euclidean approach of only using congruency in proof. Why not allow students the 

flexibility and freedom to use powerful and elegant symmetry arguments such as these? 



 
Figure 3 

More-over from symmetry, it is now easy to see that if the same construction is 

carried out for a rhombus, we would similarly obtain a rectangle as shown in Figure 3. 

Here the axes of symmetry m and n of the rhombus ABCD are clearly also axes of 

symmetry of EFGH, but through its sides, and hence the result. 

If the same symmetrical trisector construction is carried out on a parallelogram 

ABCD as shown in Figure 4, we immediately have that the constructed figure EFGH will 

also have half-symmetry, and will therefore be a parallelogram. Once again, there’s no 

need for lengthy congruency arguments! 

 
Figure 4 

From symmetry too it follows that if the same trisector constructions are 

respectively carried out on an isosceles trapezium and kite, we would respectively obtain 

a kite and an isosceles trapezium as shown in Figure 5. 



 
Figure 5 

Given the inherit symmetry of the quadrilaterals, and of the construction itself, the above 

results automatically generalize for quadri-sectors, penta-sectors, etc. of the angles. 

Figure 6 shows the respective hexa-sector constructions for a rectangle and a rhombus. 

 
Figure 6 

It is hoped that these few examples have convinced some readers of the power and beauty 

of symmetry, and to encourage its use more often in high school geometry where 

appropriate (also compare Fielker, 1983; Johnston-Wilder & Mason, 2005). Note that it is 

not suggested here that we should throw out the Euclidean approach completely, but 

really more that we should have some balance and flexibility, and sometimes allow 

(accept) symmetry arguments where it is sensible to do so. For example, in some 



instances, as illustrated here, we are perhaps needlessly be-labouring the point when a 

simple argument in terms of symmetry will suffice (and if fact, might be more 

illuminating).  

After all, in mathematical papers that mathematicians publish they frequently use 

symmetry arguments in geometry (and in other areas) rather than always resorting to 

tedious congruency proofs, etc. The same applies to the many mathematics competitions 

where students are usually not penalized if they instead use symmetry (and in fact are 

sometimes given extra marks for elegance to distinguish between top candidates). It 

seems unreasonable, and perhaps even unfair, to insist that learners at school should 

struggle the ‘hard’ way. 

It should, however, not be an all or nothing approach. Learners are likely to 

benefit if concepts are sometimes approached and seen, and theorems proved, from both 

perspectives, Euclidean as well as a more modern transformational view, as this is likely 

to increase their understanding. 

Lastly, it is hoped that as discussed more fully in De Villiers, Govender & 

Patterson (2009), students will be more actively engaged not only in the process of 

formulating and evaluating different definitions for the quadrilaterals, including ones 

based on their underlying symmetry, but also to critically compare them in terms of 

elegance and deductive economy. For example, comparing different definitions for say a 

parallelogram or a kite might help them understand why one definition might be better 

than another, and here we are also referring to the whole class-inclusion issue of special 

cases as well. 

 

Note: Interactive Java sketches for the results in Figures 2 and 3 are available online at: 

http://math.kennesaw.edu/~mdevilli/simply-symmetric.html  

http://math.kennesaw.edu/~mdevilli/simply-symmetric2.html   
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