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This paper first discusses the genetic approach and the relevance of the history of mathematics for teaching, 
reasoning by analogy, and the role of constructive defining in the creation of new mathematical content. It 
then uses constructive defining to generate a new generalization of the Nagel line of a triangle to polygons 
circumscribed around a circle, based on an analogy between the Nagel line and the Euler line of a triangle.  

Introduction 
The purpose of this article is to heuristically present a new generalization of the Nagel 

line of a triangle to polygons circumscribed around a circle by making use of an 

interesting analogy, referred to in De Villiers (2006), between the Nagel line and the 

Euler line of a triangle. The generalization and proof only requires a basic understanding 

of a dilation (enlargement/reduction), so might be accessible to most high school 

students and their teachers. 

 The author hopes that by describing the discovery/invention process to perhaps 

contribute in some small way to improving teachers’ general understanding of how new 

mathematics is sometimes created. This may also hopefully assist and motivate some 

teachers to attempt to recreate similar learning experiences for their students with content 

and concepts appropriate to their level. 

 Therefore, in order to place the discovery/invention process in a broader 

perspective relevant to mathematics education, the genetic approach, reasoning by 

analogy, and constructive defining, will firstly be discussed, before the generalization of 

the Nagel line to circumscribed polygons is presented. 

 

The genetic approach  

Like the mathematician George Polya, I always wondered as a student at high school, and 

even to some degree at undergraduate level at university, how all the mathematics we 

were learning, the efficient algorithms, beautiful theorems and sometime ingenious 
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proofs, had been discovered or invented (Polya, 1945). It often seemed to me mysterious 

and amazing, but sometimes also capricious and intimidating, to be taught theorem after 

theorem, followed by carefully presented proofs, without been given any insight into how 

they were found, nor what might have motivated them in the first place. Faced with an 

unrelenting barrage of mathematics presented in this way, I sometimes felt I had little 

choice but to succumb to dutiful memorization and rote learning in order to pass the 

exams.  

One of the first books that I read that seriously attempted to demystify the origins 

of mathematics (and that has had a life-long influence on me), was Polya’s famous 1945 

book How to Solve It, which concentrated on the processes of mathematics, not the end-

results or products. This focus on the processes of mathematics is in correspondence with 

what is often called the ‘genetic’ approach in mathematics education and was already 

propounded in 1924 by the German mathematician Felix Klein as follows: 

“People often think that mathematics can, or even should be, taught purely 

deductively, in the sense that a certain set of axioms should serve as a starting point and 

everything else should be derived logically from it. This approach is often justified on the 

authority of Euclid, but does not correspond to the historical development of 

mathematics.” – Klein (1924, p. 17) 

“(The teacher) ought … to lead pupils slowly along the same path to higher ideas 

and finally to abstract formulations, as those that the human race in general followed 

from a naïve primitive state to knowledge at higher, abstract level.” – Klein (1924, p. 

290) 

Likewise Freudenthal (1973) has criticized a deductive teaching approach and 

labelled it an “anti-didactical inversion” of the historical process, arguing instead that 

students should be given the opportunity to “re-invent” mathematics for themselves. 

Toeplitz (1963, p. v) eloquently describes as follows the motivation behind the genetic 

approach and how it might help to demystify mathematics to learners and students: 

"Regarding all these basic topics in infinitesimal calculus which we teach today 

as canonical requisites, e.g., mean-value theorem, Taylor series, the concept of 

convergence, the definite integral, and the differential quotient itself, the question is 

never raised "why so?" or "How does one arrive at them?" Yet all these matters must at 
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one time have been goals of an urgent quest, answers to burning questions, at the time, 

namely, when they were created. If we were to go back to the origins of these ideas, they 

would lose that dead appearance of cut-and-dried facts and instead take on fresh and 

vibrant life again." 

However, for Toeplitz (loc. cit.) it is clearly not about a complete dramatization of 

the history of mathematics: 

"The 'historian - the mathematical historian as well - must record all that has 

been, whether good or bad. I, on the contrary, want to select and utilize from 

mathematical history only the origins of those ideas which came to prove their value ... It 

is not history for its own sake in which I am interested, but the genesis its cardinal points, 

of problems, facts, and proofs." 

With reference to Klein’s genetic principle, Hull (1969, p. 29) similarly writes: 

"It certainly suggests that the pattern of past mathematical discovery should be 

closely studied in relation to any proposed pattern of individual learning. This does not 

mean a slavish adherence to the historical order of development in every detail or topic; 

but it may well mean that the broad general lines along which the race has conducted its 

creative thought are also the lines along which children can most naturally learn." 

 

It is therefore encouraging that the Revised National Curriculum Statement (RNCS) 

(2002, p. 13) acknowledges the importance of the history of mathematics by stating that 

the Mathematics Learning Area should develop “an appreciation for the diverse 

historical, cultural and social practices of Mathematics” (bold added), and later on gives 

several examples like the following: 

“Grade 5 Assessment Standards: Describes and illustrates various ways of 

writing numbers in different cultures (including local) throughout history.” - RNCS 

(2002, p. 49) 

“Grade 8 Assessment Standards: Describes and illustrates ways of measuring in 

different cultures throughout history (e.g. determining right angles using knotted string, 

leading to the Theorem of Pythagoras).” - RNCS (2002, p. 95) 
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However, as shown above, RNCS unfortunately seems to restrict the use and importance 

of the history of mathematics to only the incorporation of a few historical examples here 

and there. More generally, one can distinguish at least four ways in which the history of 

mathematics can be utilised by a teacher: 

1) a complete presentation of the historical development of a concept, algorithm or 

theorem 

2) an abbreviated presentation of the most significant moments of the historical 

development in chronological order 

3) a presentation which includes no historical material, but is nonetheless based on 

an analysis of the historical development of the particular concepts, algorithms 

and theorems (the indirect, genetic method) 

4) a presentation which is not at based on the actual historical development of the 

particular concepts, algorithms and theorems, but attempts to simulate with the 

advantage of hindsight, how they might’ve been discovered and/or invented 

through typical mathematical processes or ways of thinking. 

 

In other words, what is suggested in 4) above, is that a detailed analysis of the history of 

mathematics can lead to the identification of certain general patterns and processes by 

which mathematical content is discovered and invented, and that these patterns and 

processes could then be utilized as possible teaching approaches without any direct 

reference to the history of the particular content being taught. So for example, it is 

possible to teach Boolean Algebra as described in De Villiers (1986a), not in the actual 

historical order nor from the context it originally developed, but to instead begin by 

focussing on the modelling of switching circuit problems, and only later on dealing with 

its axiomatization into a formal mathematical system of axioms, theorems and proofs (as 

well as its application to other areas such as logic, computer programming, biology, etc.) 

 An approach in which learners are exposed to or engaged with the typical 

mathematical processes by which new content in mathematics is generally discovered, 

invented and organized has been called a "reconstructive" approach by Human (1978:20) 

as follows: 
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"With this term we want to indicate that content is not directly introduced to 

pupils (as finished products of mathematical activity), but that the content is newly 

reconstructed during teaching in a typical mathematical manner by the teacher and/or 

the pupils." (freely translated from Afrikaans) 

Clearly, such a reconstructive teaching approach also closely corresponds to the 

constructivist view of learning, which rejects the notion that knowledge can be directly 

transferred from a teacher or a textbook to a learner, but assumes that knowledge has to 

be actively reconstructed by the learner in order to be meaningful (Wikipedia, 2008). 

The effective implementation of a reconstructive approach therefore presupposes 

that teachers themselves are well acquainted and proficient in typical mathematical 

processes. The history of mathematics is of course not the only source by which teachers 

can gain useful knowledge and insight into the typical mathematical processes by which 

new mathematics is discovered and created. Valuable insight can also be obtained by 

reading books on problem solving, problem posing and heuristic reasoning, and perhaps 

most importantly, from being mathematically active oneself, and reflecting on one’s own 

struggles and triumphs. It is therefore with this latter view in mind that this article hopes 

to make a modestly small contribution, and to which we are now proceeding in the next 

sections. 

 

Reasoning by analogy 

Analogy is a kind of similarity. Reasoning by analogy is often a powerful means of 

extending or applying mathematical results into other domains. It has often also featured 

in several major scientific discoveries. For example, by noticing the analogy between the 

movement of a projectile and the moon around the earth, Newton was ultimately steered 

in the direction of his famous laws. Similarly, Kekulé is reputed to have developed the 

idea of a circular molecular structure for benzene from a dream of a snake swallowing its 

tail. When first Leonardo da Vinci, and then later the Wright brothers, considered 

propellers, they respectively regarded them as “air screws” or “rotary wings”. 

Polya (1954, p. 13) defines an analogy between two mathematical systems as 

follows: “two systems are analogous, if they agree in clearly definable relations of their 

respective parts.” 
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 For example, a circle, triangle and square in the plane are respectively analogous 

to a sphere, tetrahedron and cube in space. In the plane, a circle may be defined as the 

locus of all points equidistant from a point, but similarly in space, a sphere can be defined 

as the surface formed by all the points equidistant from a point. A triangle is the most 

elementary, finite figure in the plane bounded by straight lines, whereas a tetrahedron is 

the most elementary solid in space bounded by planes. Lastly, congruent line segments, 

all perpendicular to each other, bound a square in the plane, while congruent square 

faces, all perpendicular to each other, bound a cube in space.   

 Sometimes an analogy can be defined explicitly, for example, when the relations 
are governed by the same rules or axioms. For example, the addition of numbers is 
analogous to the multiplication of numbers, since both are commutative and associative. 
In such a case where the analogy is determined by clearly defined rules, we have a 
duality, as the two operations can be interchanged (as long as only these laws are 
involved).  

For example, this duality between addition and multiplication extends to a fruitful 
analogy between arithmetic and geometric sequences to produce an interesting dual for 
the Fibonacci sequence, involving an analogous rule Tn 

! 

"  Tn+1 = Tn+2 for producing 
consecutive terms (see De Villiers, 2000). Just like the Fibonacci sequence, the limit of 
the quotients of the logarithms of the adjacent terms of this dual sequence is also the 

golden ratio, i.e.: 

! 

lim
n"#

logTn+1

logTn
= $ . 

 

Constructive defining 
"... the algorithmically constructive and creative definition ... models new objects out of 
familiar ones"  - Hans Freudenthal (1973 : 458). 
 
In mathematics we can distinguish two different types of defining of concepts, namely, 

descriptive (a posteriori) and constructive (a priori) defining (e.g. compare Krygowska, 

1971; Human, 1978:164-165; De Villiers, 1986b). However, for the purpose of this 

article only constructive defining is relevant. 

 Constructive (a priori) defining takes places when a given definition of a concept 

is changed through the exclusion, generalization, specialization, replacement or addition 

of properties to the definition, so that a new concept is constructed in the process (see 
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Figure 1). In other words, a new concept is defined "into being", the further properties of 

which can then be experimentally or logically explored. The main purpose or function of 

a priori defining is the production of new knowledge.  

Figure 1: Constructive Defining  

 

A classic, historical example of constructive defining using analogy is the extension of 

the algebra of the real numbers by Bombelli in 1569 to complex algebra with imaginary 

numbers, by the addition of an imaginary unit, 

! 

i2 = "1, yet maintaining the same basic 

laws of commutativity, associativity, distributivity, closure and identities. In a letter to his 

sister, Weil (1940, p. 339) stated: “the analogies between algebraic functions and 

numbers have been on the minds of all the great number theorists of the time”, and in 

1946, he laid the foundations of algebraic geometry from the analogy of the theory of 

differentiable manifolds with some constructions from algebraic topology. 

  Another famous example is that of defining a hypercube (a four dimensional 

cube) by analogy from a three-dimensional cube. Since a cube viewed directly from the 

front appears like a square within a square with corresponding vertices connected as 

shown in Figure 2a (i.e. a 2-D representation of a 3-D object), by analogy one can 
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consider a hypercube as a cube inside a cube (i.e. a 3-D representation of a 4-D object) as 

shown in Figure 2b.  

Figure 2: Generalizing a cube to the fourth dimension 

 

In a similar way, by using analogy we can constructively define a generalization of the 

concept of a parallelogram to hexagons by defining a parallelo-hexagon as a hexagon 

with opposite sides equal and parallel (see Figure 3). Or by relaxing one or the other 

condition, we can generalize even further by constructively defining a parallel-hexagon 

as a hexagon with opposite sides parallel or a oppo-sided hexagon as a hexagon with 

opposite sides equal.  

Figure 3: Generalizing a parallelogram 

. 

The analogy between the Euler and Nagel lines of a triangle  
“Analogy seems to have a share in all discoveries, but in some it has the lion’s share.” – 

George Polya (1954, p. 17) 
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A remarkable analogy between the nine-point circle and Euler line on the one hand, and 

that of the Spieker circle and Nagel line on the other hand, is contrasted in the table 

below, and illustrated in Figure 4 (Coolidge,1971; Honsberger, 1995; De Villiers, 2006).  

Figure 4: Nine-point & Spieker circles 

 

The nine-point circle is the circumcircle 

of ABC's median triangle and has radius 

half that of circumcircle of ABC. 

The Spieker circle is the incircle of ABC's 

median triangle and has radius half that 

of incircle of ABC. 

The circumcentre (O), centroid (G) & 

orthocentre (H) of any triangle ABC are 

collinear (Euler line), GH = 2GO and the 

midpoint of OH is the centre of the nine-

point circle (P) so that HP = 3 PG. 

The incentre (I), centroid (G) & Nagel 

point (N) of any triangle are collinear 

(Nagel line), GN = 2GI and the midpoint 

of IN is the centre of the Spieker circle 

(S) so that NS = 3 SG. 

 

It is insightful to compare the underlying similarity transformations implied by both 

results. For example, note that for the Euler line, a halfturn with centre G and a scale 

factor of ½, maps ABC onto the median triangle Aʹ′Bʹ′Cʹ′, and circumcentre O to P. But a 
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dilation with a scale factor of 2 from centre O, maps Aʹ′Bʹ′Cʹ′ to Aʺ″Bʺ″Cʺ″, and P to H. 

Therefore, H (the orthocentre of ABC) is the circumcentre of Aʺ″Bʺ″Cʺ″. 

 Similarly, for the Nagel line, a halfturn with centre G and a scale factor of ½, 

maps ABC onto the median triangle Aʹ′Bʹ′Cʹ′, and incentre I to S. But a dilation with a scale 

factor of 2 from centre O, maps Aʹ′Bʹ′Cʹ′ to Aʺ″Bʺ″Cʺ″, and S to N. Therefore, N (the Nagel 

point of ABC) is the incentre of Aʺ″Bʺ″Cʺ″. 

 

Generalizing the Euler and Nagel lines to quadrilaterals 

Let us now first consider generalizing the Euler line to a cyclic quadrilateral. In general, 
given any quadrilateral ABCD as shown in Figure 5, the respective centroids Cʹ′, Dʹ′, Aʹ′ and 
Bʹ′ of triangles ABD, ABC, BCD and CDA form a quadrilateral Aʹ′Bʹ′Cʹ′Dʹ′, similar to the 

original and scale factor -1/3 (a halfturn and reduction by 1/3), with lines AAʹ′, BBʹ′, CCʹ′ and 
DDʹ′ concurrent in G. Then this point of concurrency G (centre of similarity between ABCD 

and Aʹ′Bʹ′Cʹ′Dʹ′) is defined as the centroid of the quadrilateral (for proofs, see De Villiers, 

1999; Yaglom, 1968).  

G

C'

B '

A '
D'

A

B

C

D

 
Figure 5: Centroid of Quadrilateral 

Another result we will need is the following. For a cyclic quadrilateral, the 

perpendiculars from the midpoints of the sides to the opposite sides (called the 

maltitudes) are concurrent as shown in Figure 6 (for a proof see De Villiers, 1999). This 

point of concurrency also coincides with the common point of intersection of the four 

nine-point circles of triangles ABC, BCD, CDA and DAB, and is constructively defined as 

the nine-point (or Euler) centre of a cyclic quadrilateral by Yaglom (1968, p. 24). 
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 Then as shown in Figure 7, we have the interesting generalization of the Euler 

line, namely, that the circumcentre O, nine-point centre P, and centroid G of a cyclic 

quadrilateral are not only collinear, but also OG = GP (for a proof see De Villiers, 1999).  

 Maintaining the same relationship as for a triangle between the circumcentre O, 

nine-point centre P, and orthocentre H, we can now also constructively define the 

‘orthocentre’ of a cyclic quadrilateral as a point H so that OP = PH, and O, P, and H are 

collinear. 

Figure 6: Nine-point centre of a cyclic quadrilateral 

Now similarly to the case for a triangle, note according to the given ratios between the 

points, that a dilation of -1/3 with centre G, maps ABCD onto the centroid quadrilateral 

Aʹ′Bʹ′Cʹ′Dʹ′, and circumcentre O to Oʹ′. Hence, if GOʹ′ = x, then GO = 3x. But a dilation with 

a scale factor of 3 from centre O, maps Aʹ′Bʹ′Cʹ′Dʹ′ to Aʺ″Bʺ″Cʺ″Dʹ′ʹ′, and Oʹ′ʹ′ to H. Therefore, 

H (which we defined as the orthocentre of a cyclic quadrilateral) is the circumcentre of 

Aʺ″Bʺ″Cʺ″ Dʹ′ʹ′, and we have OH = 3 × OOʹ′ = 3 × 4x = 12x and HG = 9x = 3GO(and from 

our definition of H in terms of P it follows that PO = 6x and PG = 4x = GO). 

On the basis of the analogy between the Euler and Nagel line of a triangle, and the 

above result for a cyclic quadrilateral, we can now constructively define the Nagel line 

for a quadrilateral circumscribed around a circle as follows (see Figure 7). For the 

circumscribed quadrilateral, a dilation of -1/3 with centre G, maps ABCD onto the 

centroid quadrilateral Aʹ′Bʹ′Cʹ′Dʹ′, and incentre I to Iʹ′, and because of the half-turn, I, G and 
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Iʹ′ are collinear. Next apply a dilation with a scale factor of 3 from centre I, to map 

Aʹ′Bʹ′Cʹ′Dʹ′ to Aʺ″Bʺ″Cʺ″Dʹ′ʹ′, and Iʹ′ʹ′ to the point N, which we now constructively define as the 

Nagel point of a circumscribed quadrilateral. Then from the applied transformations we 

have similarly to the cyclic case that N, G and I are collinear, and NG = 3GI. If we 

analogously define the Spieker centre S as the midpoint of NI, we also have SG = GI.  

 

Figure 7: Euler line of cyclic quad & Nagel line of circum quad 

Generalizing the Euler and Nagel lines to cyclic and circumscribed polygons 

The generalization of both results depend on the following general theorem for the 

centroid of any polygon, given and proved in De Villiers (1999) and Yaglom (1968): 

“Given a n-gon A1A2A3...An  (n ≥ 3)…, then the centroids of the (n-1)-gons, A1A2A3...An !1, 

A2A3A4...An , etc. that subdivide it, form a n-gon 

! 

A1
'A2

' A3
' ...An

'  similar to the original n-gon 

with a scale factor of  

! 

"
1
n "1

, while the centre of similarity is the centroid of the original 

n-gon.” 

 Using this general result, we now constructively, and in general, define the 

orthocentre and Nagel point of a cyclic and circumscribed polygon, respectively, as the 

   

S

N

D''

C''

B''

A''

I '
D'

C '

B '

A '

G

D

C

A

B
O'

D''

C''

B''

A''

H

G

C'

B '

A '

D'

P

O
I

A

B

C

D



Published in Pythagoras, 68 (Dec 2008), pp. 32-40, a journal of AMESA. 

circumcentre and incentre of the n-gon 

! 

A1
''A2

''A3
'' ...An

''  obtained from the dilation of the 

respective centroid polygon 

! 

A1
'A2

' A3
' ...An

'  with scale factor n – 1.  

As shown in Figure 8, if for example for the general Euler line we let GOʹ′ = x, 

then GO = (n – 1)x, OOʹ′ = nx and HG = 

! 

n(n "1)x " (n "1)x = (n "1)2 x . Hence, 

! 

HG
GO

=
(n "1)2 x
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= n "1. It also follows that since P is the midpoint of OH that PG = 
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"1, etc. In exactly the same way, it 

follows for the general Nagel line that 
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Figure 8: General Euler and Nagel lines 

 

Concluding comments 
Note that in the physical, real world context, the centroid given above is for point masses 

located at the vertices of cyclic and circumscribed polygons. Myakishev (2006) provides 

a completely different generalization of the Nagel line of a circumscribed quadrilateral by 

considering instead the centroid of a ‘perimeter” circumscribed quadrilateral (in other 

words, where all the weight is distributed along the boundary), and constructively 

defining a different Nagel point. 

 According to Benson (2007, p. 4), apart from its usefulness in discovering new 

knowledge, the ability to recognize analogies is also fundamental to problem solving as it 

“allows the solver to connect the familiar (a previously used method, strategy, or context) 

to the unfamiliar (a new problem)”. Problem solving research has indeed revealed that 

expert problem solvers in mathematics and science engaged “in metaphorical processes 

as they constructed problem representations, they looked for analogies between the 

problem at hand and other familiar situations” (Silver, 1987, p.45). An immediate 
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research question that comes to mind is whether and how such reasoning can be 

developed and taught to novice learners.  

Functional analyst Stefan Banach (1892-1945) as quoted on 

http://en.wikipedia.org/wiki/Stefan_Banach characterizes great mathematicians by their 

ability to go further, and even spotting analogies between analogies: "Good 

mathematicians see analogies. Great mathematicians see analogies between analogies." 

Brown & Porter (undated) argue that one of the reasons for the current usefulness and 

importance of Category Theory, particularly in its application to scientific problems, is 

that it gives “an abstract mathematical setting for analogy and comparison, allowing an 

analysis of the process of abstracting and relating new concepts. This setting is one of the 

most important routes for the application of Mathematics to scientific problems.” 

 It would appear that reasoning by analogy is a fundamental human ability and 

relates to our attempts to construct meaning and draw relationships between similar 

concepts or objects. From a very young age children are able to identify analogies, e.g. a 

lion is like a large cat, or a burrow for a rabbit is like a nest for a swallow, and as adults 

we often use analogies to communicate more effectively. Already in ancient Greek 

philosophy as well as the Bible there appear excellent analogies – the fables of Aesop and 

the parables of Jesus draw powerful analogies with the circumstances of people, and used 

to convey a moral or religious message. In traditional IQ and SAT-tests, simple analogies 

like “legs are to mammals as … are to fish” have been frequently used as test-items to 

measure “intelligence”, “academic potential” or “reasoning ability”.  

 Use of analogy in the classroom by teachers can allow students to observe and use 

commonalities between different mathematical concepts, algorithms, representations, 

theorems, classifications, etc., thereby contributing to better integration of different 

components of mathematical knowledge. Most teachers probably use analogies such as 

‘solving inequalities is like solving equations’, or ‘balancing equations is like balancing 

a scale’. However, since analogies highlight commonalities, but not the essential 

differences, teachers ought to ensure that learners do not lose track of important 

underlying or fundamental distinctions.  

In fact, the use of some popular analogies can be dangerous as pointed out by 

cognitive research over the last thirty years. For example, simply stating, ‘doing algebra 
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is just like doing arithmetic with letter symbols’, in many ways seriously trivializes the 

abstract meaning of letter symbols representing “variables” or “generalised numbers” 

(Hart, 1981). Even worse, is the ubiquitous use of the false or misleading analogy that 2x 

+ 3x = 5x because 2 apples plus 3 apples = 5 apples. Sadly, some teachers often still say 

“we can’t add 2x + 3y” because they are “unlike terms” and we can’t add apples and 

oranges. This completely misleading use of letter symbols representing ‘concrete objects’ 

has been aptly called “fruit-salad” algebra. 

Other analogies may help learners to remember results, e.g. a ‘negative times a 

negative is positive since magnets of same polarity repel each other’, but provides no 

explanation why the result is true. In such cases, they only serve the purpose of a 

mnemonic (memory aid device), but provide no meaningful integration with other 

mathematical concepts, and no different from rote learning of “rules without reasons”. 

Finding analogies between the properties of geometric figures on the plane and on 

the sphere (as well as major differences) can assist learners in developing a deeper 

understanding of the propositional nature of mathematics. More-over, according to Lenart 

(2004), learning comparatively about different types of geometries can help students 

develop a more tolerant view toward other people with opposing views, or of different 

social or cultural background, or when getting into another political, economical or 

technical environment. 

Given the rich, multi-lingual and cultural diversity of South Africa, it seems a pity 

that very little research on analogical reasoning in mathematics seems to have been done 

locally. A study by Richland et al (2007) found that though mathematics teachers in 

Hong Kong and Japan compared to their USA counterparts used about the same number 

of analogies, they generally offered more cognitive support to explore the analogies more 

deeply and thoroughly. In particular, there was much more emphasis in the Asian 

countries on relational reasoning, and the use of mental and visual imagery. Taken 

altogether, these factors may well conceivably contribute to differences in performance in 

TIMMS achievements for these countries (Richland et al, 2007). 

Of relevance to mathematics teachers and mathematics education researchers is a 

book edited by English (2004) reporting the results of a 3-year longitudinal study whose 

participants were children in Australia and the United States. In particular, the book seeks 
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to understand the relationship between mathematical reasoning and children’s natural 

tendency to create analogies. The book reports the results of empirical studies, as well as 

classroom discourse and case studies, which qualitatively analyze the role of discourse in 

the development and relationship between mathematical and analogical reasoning. 

Lastly, but not least, little or no educational research unfortunately seems to have 

done on the use of analogical reasoning at higher reasoning levels of proof production, 

formulation or refutation of conjectures, definitions, axiomatization, problem-posing, etc. 

This paper has illustrated how constructive defining and analogical reasoning can 

produce new mathematical knowledge involving several of these higher reasoning skills. 

It is therefore hoped that this paper in some small measure may convince some 

mathematics education researchers of the value and importance of research in this area. 

Note: A Dynamic Geometry (Sketchpad 4) sketch in zipped format (Winzip) of the 

results discussed here can be downloaded directly from: 

http://mysite.mweb.co.za/residents/profmd/nagel.zip  

(This sketch can be viewed with the free demo versions of Sketchpad 4 or Sketchpad 5 

that can be respectively downloaded from: http://www.keypress.com/x17670.xml or 

http://www.keypress.com/x24795.xml ) 
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