## Clough's Theorem (a variation of Viviani) and some Generalizations

During 2003, Duncan Clough, a Grade 11 student from Bishops Diocesan College, a high school in Cape Town, was exploring Viviani's Theorem, which says that the sum of distances of a point to the sides of an equilateral triangle is constant. Using dynamic geometry software, he then discovered (but could not himself prove) the following interesting variation of Viviani's theorem.

**Clough's Theorem**: Label the feet of the altitudes from an arbitrary point *P* inside an equilateral triangle *ABC* to the sides *AB*, *BC*, *AC* respectively as *P*_{C}, *P*_{A}, *P*_{B}, then *AP*_{C} + *BP*_{A} + *CP*_{B} is constant. (Drag point *P* in the sketch, or *B* or *C* to change the size or orientation of the triangle.)

**NOTE**: Please WAIT while the applets below load. If a security pop-up menu appears in your browser, please choose **RUN/ALLOW** to let the applets run properly. *It is completely safe & can be trusted*. If you have the very latest Java on your PC or Apple Mac, and experience problems with the applets loading, please go *here* for additional information on Java settings or using a Java Converter that should resolve the issue.

####

Clough's Theorem (a variation of Viviani)

Can you logically explain (prove) why the result is true? Can you find different explanations (proofs)?

**Exploring Some Generalizations**

Viviani's Theorem generalizes to polygons that are equilateral or equi-angled, or to 2*n*-gons with opposite sides parallel - see for example, 2D Generalizations of Viviani's Theorem. Can you similarly generalize Clough's Theorem to these higher polygons? See Further generalizations of Clough's Theorem.

**Some Proofs**

1) Read my ICME 12 Regular Lecture in Korea in July 2012, published in *Pythagoras*, An illustration of the explanatory and discovery functions of proof for various proofs of the above.

2) Read the 2012 proof of Clough's Theorem by Shailesh Shirali from India in the mathematics education journal "*At Right Angles*" at: Viviani's Theorem and a Cousin.

3) Clough's Theorem was used as a problem in the first round of the British Mathematical Olympiad of of 2013/2014. Read one of the proofs produced by students, which was similar to the following very short and elegant one, kindly sent to me in 2015 by Gregoire Nicollier from Switzerland at: Clough's Theorem: The Simplest Proof.

This page uses **JavaSketchpad**,
a World-Wide-Web component of *The Geometer's Sketchpad.*
Copyright © 1990-2011 by KCP Technologies, Inc. Licensed only for
non-commercial use.

*Back
to "Dynamic Geometry Sketches"*

*Back
to "Student Explorations"*

Created by Michael de Villiers, 23 January 2013; updated 23 June 2015.